Causality frameworks

Miguel Olivo-Villabrille

- ► Here we do a brief review of causality (also known as causal inference or causal analysis).
 - ► This will be a high-level overview.
- Establishing causality is the 'killer app' of empirical economists.
 - As opposed to other data disciplines that often times are content with simply obtaining correlations.

- We say that X causes Y if we were to intervene and change X without changing anything else and Y would change as a result.
- Many interesting questions we are interested in answering with data are causal.
- Of course, some questions are non-causal. For example, questions about prediction (machine learning excels in this).
- Almost every 'why' question is causal.
- ▶ We aim to answer the question 'how do we know if X causes Y?'

- Some causal relationships:
 - Setting a light switch to on causes the light to be on.
 - Pushing the break pedal causes a car to slow down.
 - Obtaining a college degree increases earnings.
 - Exercise improves overall health.
- Correlation is not causation:
 - People carrying umbrellas on rainy days (even before it rains) [causality goes in the other direction].
 - Consumption of wine and longevity.

- ► 'X causes Y' doesn't necessarily mean that X is the only thing that causes Y.
- ▶ It does not mean that all the change on *Y* is due to *X*.
- ▶ The important thing is that at least *X* changes the probability of *Y* occurring.

- But why do we need a causal framework?
- Statistics alone is not sufficient to establish causality.
- Statistics lacks 'directionality.'
- ▶ In statistics, two random variables X, Y can be fully described by their joint distribution.
- ► However, causality requires additional information regarding the direction of the causal relationship between *X* and *Y*.
 - ► For example, a (purely statistical) regression of Y on X with highly significant coefficients tells us nothing about the direction of causality, since regressing X on Y will also produce significant coefficients.

- We will briefly see three frameworks for establishing causality.
- These frameworks are commonly employed in economics and public policy.
- Potential Outcomes Framework.
- Structural Causal Model.
- 'Econometric' model of causality.

- Also called the Rubin causal model, Neyman-Rubin causal model.
- ► The Potential Outcomes Framework was introduced by Jerzy Neyman in 1923 for randomized experiments.
- Extended to observational data by Donald Rubin in 1974-1980.
- ▶ It is now the basic framework for much of modern statistical analysis aiming to establish causality.
- Applications abound: labor econ, health econ, family econ, environmental econ, industrial organization, corporate finance, trade, agricultural econ, sociology, political science, psychology, etc.
- ▶ 2021 Nobel in Econ awarded to Card, Angrist & Imbens: all empirical economists, citation for Angrist & Imbens mentions causality.

- Some references:
- Mastering 'Metrics: The Path from Cause to Effect, by Joshua Angrist and Jörn-Steffen Pischke, 2014.
- ► Causal Inference: The Mixtape, by Scott Cunningham, 2021.
- Mostly Harmless Econometrics: An Empiricist's Companion, by Joshua Angrist and Jörn-Steffen Pischke, 2009.
- Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction, by Guido Imbens & Donald Rubin, 2015.
- ► Endogeneity in Empirical Corporate Finance, by Michael R. Roberts & Toni M. Whited.

- ► Four basic strategies: randomized trials, matching, instrumental variables (includes regression discontinuity), and difference-in-differences.
- ▶ We now present an overview of its basic components.
- ➤ Y is the outcome (for example wages), D is the treatment or intervention (for example university graduation).
 - Treatment does not have to be binary, but for simplicity let's assume it is.
- The model describing the impact of treatment on outcome is

$$Y = h(D, U).$$

- ▶ *U* is an individual-level unobserved random factor (for example individual abilities, skills, work ethic, interpersonal connections, preferences, etc).
 - Often, instead of writing U, authors prefer to index by i: $Y_i = h_i(D_i)$.

- We can simplify notation further, by defining Y(0) = h(0, U), and Y(1) = h(1, U).
- We do not observe both Y(1) and Y(0) for a single individual.
 - These are called potential outcomes of treatment and non-treatment.
- We only observe the realized value Y = Y(0) + D(Y(1) Y(0)).
 - If D=1 (individual is treated) then Y=Y(1) (the observed outcome is the potential outcome of treatment).
 - If D=0 (individual is not treated) then Y=Y(0) (the observed outcome is the potential outcome of non-treatment).

▶ We can then define the causal or treatment effect of D on Y:
The causal effect of D on Y is

$$TE(U) = Y(1) - Y(0) = h(1, U) - h(0, U)$$

the change in Y due to treatment while holding U constant.

▶ We can also define the average treatment effect: The average causal effect of D on Y is

$$ATE = \mathbb{E}[TE(U)] = \int_{\mathcal{U}} TE(u)f(u) du$$

where f(u) is the density of U, and the integration is over the domain of f, \mathcal{U} .

We don't observe both Y(1) and Y(0), can we compare observable outcomes for treated and untreated individuals?

$$\mathbb{E}[Y \mid D = 1] - \mathbb{E}[Y \mid D = 0] = \int_{\mathcal{U}} h(1, u) f(u \mid D = 1) \, du - \int_{\mathcal{U}} h(0, u) f(u \mid D = 0) \, du.$$

- ▶ In general, that comparison does not yield the ATE, unless D and U are independent.
- ▶ If D is randomly assigned (as in a randomized trial) then D and U become independent and we have $f(u \mid D) = f(u)$, so:

$$\mathbb{E}[Y \mid D = 1] - \mathbb{E}[Y \mid D = 0] = \int_{\mathcal{U}} (h(1, u) - h(0, u)) f(u) \, \mathrm{d}u = ATE.$$

ightharpoonup The framework can be extended to allow for covariates X:

$$Y = h(D, X, U).$$

ightharpoonup The causal or treatment effect of D on Y now becomes

$$TE(X, U) = h(1, X, U) - h(0, X, U)$$

the change in Y due to treatment holding X and U constant.

The conditional average causal effect of D on Y conditional on X=x is

$$ATE(x) = \mathbb{E}[TE(X, U) \mid X = x] = \int_{\mathcal{U}} TE(x, u) f(u \mid x) du$$

where $f(u \mid x)$ is the conditional density of U given X = x.

ightharpoonup The unconditional average causal effect of D on Y is

$$ATE = \mathbb{E}[ATE(X, U)] = \int_{\mathcal{X}} ATE(x)f(x) dx$$

where f(x) is the density of X, and \mathcal{X} is the domain of X.

- Rather than requiring that D and U be independent, we can instead require that D and U be independent conditional on X.
- Conditional Independence Assumption (CIA):
 - Conditional on X, the random variables D and U are independent.
- ▶ Then we have, $f(u \mid D, X) = f(u \mid X)$, so

$$\mathbb{E}[Y \mid D = 1, X = x] - \mathbb{E}[Y \mid D = 0, X = x]$$

$$= \int_{\mathcal{U}} h(1, x, u) f(u \mid x) du - \int_{\mathcal{U}} h(0, x, u) f(u \mid x) du$$

$$= \int_{\mathcal{U}} TE(x, u) f(u \mid x) du = ATE(x).$$

In the context of linear regression, we have $Y = \beta_1 + \beta_2 D + \beta_3 X + u$, then $ATE = \beta_2$.

- ► That basic framework can be applied to all research designs in the Rubin causal framework.
 - ► IV extends the framework to accommodate the relationship between treatment and instrument.
- Notice we need some kind of independence between treatment D and U (randomized trials or natural experiments).
 - Except for difference in differences, which instead relies on parallel trends assumption. Still, randomization buys a lot of credibility in DiD.
- Some implicit assumptions of the framework:
 - Stable unit treatment value assumption (SUTVA): rules out spillover effects, network effects, general equilibrium effects.

- Also called Do-calculus.
- ► The Structural Causal Model was introduced by Judea Pearl in 1995-2000.
- ▶ Introduces an operator to indicate causality $Pr(Y \mid do(X))$.
- Perhaps the most defining feature of the framework is its use of Directed Acyclic Graphs (DAG).
- ▶ Although earlier attempts at using graphs for causal analysis date from 1920s with the work of Sewall Wright.
- SCM is very popular in computer science and artificial intelligence communities.
- Economists have been slow in adopting this framework, but there are some examples of applications (Spiegler, 2020).
- ▶ Interestingly, Imbens is skeptical about SCM (Imbens, 2020).

- Some references:
- Causality, by Judea Pearl, 2009.
- Causal Inference in Statistics: A Primer, by Judea Pearl, Madelyn Glymour & Nicholas Jewell, 2016.
- Counterfactuals and Causal Inference: Methods and Principles for Social Research, by Stephen Morgan & Christopher Winship, 2014.
- ► The Effect: An Introduction to Research Design and Causality, by Nick Huntington-Klein, 2022.
- ▶ The Book of Why, by Judea Pearl & Dana Mackenzie, 2018.
- ▶ Online tool: dagitty.net. It is also an R package.

- ▶ A DAG is a collection of vertices (or nodes) and edges that satisfies certain conditions.
 - Edges are directed: they go from one node into another, the direction is indicated by arrows.
 - The direction of the arrow represents the direction of causality.
 - There are no cycles: there isn't a directed path from any node into itself.

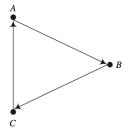


Figure 3.1 A directed graph that includes a cycle.

- Some useful terminology and conventions:
 - Each node represents an observed or unobserved random variable.
 - Observed variables are represented by solid circles ●, unobserved variables by hollow circles ○.
 - All observed variables are assumed to be influenced by unobserved random variables. This is often omitted from causal graphs for the sake of simplicity.
 - If two variables are caused by a common unobserved variable, it is often typical to join those variables by a bidirectional dashed edge.

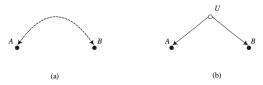


Figure 3.2 Two representations of the joint dependence of A and B on unobserved common causes.

- ► More terminology:
 - A path is any sequence of edges pointing in any direction that connects one variable to another.
 - A directed path is a path in which all edges point in the same direction.
 - A variable is a descendant of another variable if it can be reached by a directed path.
 - For directed paths of length one, as in $A \to B$, the variable A is the parent while the variable B is the child.
 - A descendant of a variable is another variable than can be reached by a directed path from the first variable.
 - In a DAG, no variable is a descendant of itself.

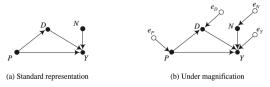


Figure 3.7 Equivalent directed graph representations of the effects of parental background (P), charter schools (D), and neighborhoods (N) on test scores (Y).

- Why go through all that trouble? Econometrics is complicated enough already.
- ▶ It turns out that there is a one-to-one mapping between graphs and systems of structural equations.
- Moreover, by following a given set of rules, identification of causal effects can be assessed from causal graphs.
- ► Let's see an example: Figure 3.7 in the previous slide corresponds to the structural equations:

$$P = f_P(e_P)$$

$$D = f_D(P, e_D)$$

$$N = f_N(e_N)$$

$$Y = f_Y(D, P, N, e_Y).$$

These are nonparametrically specified, but we can think of them as being linear regressions, ie $Y = \beta_0 + \beta_1 D + \beta_2 P + \beta_3 N + e_V$.

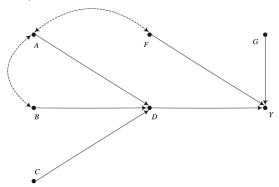
- ► This is not only useful for systems of equations, but for single equation models as well.
- We can assess whether a causal effect can be identified and under what conditions (for example whether it is necessary to control or condition for other variables) by examining a graph.
- ► Following the previous example, those equations correspond to the regression:

$$Y = \beta_0 + \beta_1 D + \beta_2 P + \beta_3 N + e_Y,$$

where D is correlated with P.

- ► The question is whether this regression identifies the causal effect of *D* on *Y*.
- ► Turns out that (using the rules provided by the SCM) as long as we control for *P*, the causal effect of *D* on *Y* is identified.
- Moreover, controlling for N is not necessary for identification of the causal effect!
 - ▶ This is a because D and N are independent, but D and P are not independent.

► A final example:



- ▶ In this graph, controlling for *F* is sufficient to identify the causal effect of *D* on *Y* (there are also other strategies available).
- ► Much easier and faster to point out what variables we need to control for, and which variables are unnecessary to control for.

- The Structural Causal Model is much richer than what I showed here.
- ▶ In fact we didn't discuss one of its more fundamental innovations, the do-operator.
- ▶ It is also worth pointing out that this is a complete system, in the sense that it is possible to discover new identification strategies from iteratively applying its rules to a novel estimation problem.
- ▶ Things that the SCM has clarified include:
 - ▶ Bad controls.
 - Berkson's paradox.

- 'Econometric' model of causality, pioneered by Ragnar Frisch & Trygve Haavelmo, and formalized by James Heckman & Rodrigo Pinto.
- ▶ It is the causality framework used in structural econometrics.
 - Structural econometrics aims to estimate deep parameters of economic models (policy-invariant parameters).
- Structural econometrics is prevalent in fields like IO, that model strategic interactions between firms in an industry.
- Also used in fields in which it is important to model and estimate policy-invariant parameters, for example in health and education, where it is important to estimate parameters of the demand function.
- Also in macroeconomics, where researchers employ general equilibrium models to forecast the economy.
- Nowadays it is also used in the private sector, for example in auctions (eg eBay), and for real-time pricing (eg Uber).

- Some references:
- ► Econometric Causality (2008), by Heckman.
- ► Causal Analysis After Haavelmo (2015), by Heckman & Pinto.
- ► Causality and Econometrics (2022), by Heckman & Pinto.
- ► The Econometric Model for Causal Policy Analysis (2022), by Heckman & Pinto.
- ► Econometric causality: The central role of thought experiments (2024), by Heckman & Pinto.
- Some references for structural econometrics:
 - ► Reiss & Wolak, 2007.
 - ► Galiani & Pantano, 2022.
 - ► Low & Meghir, 2017.
 - ► Keane, 2010a.
 - ► Keane, 2010b.

- ► The Econometric Model of Causality is more general than both of the frameworks we saw before.
 - All treatment effect parameters available in RCM and SCM can be recasted in the EMC.
 - Allows for more comprehensive analysis of phenomena.
- ▶ It relies on a hypothetical model to perform counterfactual experiments that are used to assess causality.
- More importantly, it can be used to establish causality in situations that are pervasive in economics and where the other two frameworks fail to consider:
 - Social and strategic interactions.
 - Peer effects.
 - General equilibrium effects.
 - It also allows for identification strategies that make use of functional form restrictions.

- ▶ Illustrating with a simple example.
- Consider a family that must decide how much of wife's labour to provide and how much hours of formal childcare to use.
- ► The family makes those decisions by maximising family utility subject to a budget constraint.

$$\max_{h,c} \, U(y,\ell,X;\beta) \quad \text{subject to}$$

$$y \leq \tau(y_0+wh,X) - \psi(pc,y_0+wh,X).$$

- Decision variables: c is hours of childcare, h is hours of work of wife,
- ightharpoonup y is exogenous income, ℓ is leisure time of wife, w is wage rate of wife, p is price of childcare, X is vector of demographic variables.
- Function τ encapsulates tax system, function ψ encapsulates childcare subsidy.
- \triangleright β is a vector of parameters to be estimated.

- ightharpoonup For simplicity, we consider h and c to be binary variables.
- ▶ $h \in H = \{0,35\}$, corresponding to no work, full-time work.
- $c \in C = \{0, 35\}$, corresponding to no childcare, full-time childcare.
- ▶ A more realistic model would consider restrictions between the choices of *h* and *c*, but we refrain from that here for simplicity.
- ► The choices of h and c can be combined into 4 pairs $(h,c) \in H \times C = \{(0,0), (0,35), (35,0), (35,35)\}.$
- The framework then boils down to a multinomial choice model.

- ▶ Suppose we have estimated the model and have estimates of β , denoted $\widehat{\beta}$.
- Now consider a new policy that results in a change in the price of childcare p, the new price is denoted \widetilde{p} .
- ▶ If $\widehat{\beta}$ are policy-invariant (they are 'deep' parameters), we can then solve for the family choices of h and c resulting from that new policy.
- ▶ The hypothetical model is the same model but we replace p by \widetilde{p} , and use the estimates $\widehat{\beta}$.

$$\max_{h,c}\,U(y,\ell,X;\widehat{\beta})\quad\text{subject to}$$

$$y\leq \tau(y_0+wh,X)-\psi(\widetilde{p}c,y_0+wh,X).$$

- We then have counterfactual or predicted choices under the new policy.
- Within the model, \widetilde{p} causes families to change their choices. We can then analyse those choices in a variety of ways (costings, welfare, usage, etc).

The purpose of econometric policy evaluation

- ▶ Why do we do all this?
- Good policy analysis is causal analysis.
- Good causal analysis yields policy levers that can be pulled to achieve a policy goal.
- Good causal analysis evaluates the impacts of policy interventions at small and large scale.
 - This is particularly relevant for public servants, who frequently are asked to answer questions about costs and impacts of policies.

- ► Heckman proposes four classes of policy problems that econometric analysis must address.
- P1. Evaluating the impacts of implemented interventions on outcomes in a given environment, including their impacts in terms of the well-being of the treated and society at large.
 - Ex post analysis.
 - Evaluate the impact of increasing the level of childcare subsidy on childcare usage, and welfare gains, after the policy change has been implemented.
 - Partially addressed by RCM, and SCM. They cannot address welfare effects. Fully addressed by EMC.

- P2. Understanding the mechanisms producing treatment effects and policy outcomes.
 - ▶ What are the causes of the effects we observe?
 - Why do some families seem to be insensitive to changes in childcare subsidy?
 - Partially addressed by RCM, SCM (using mediators). Fully addressed by EMC.

- P3. Forecasting the impacts (constructing counterfactual states) of interventions implemented under one environment when the intervention is applied to other environments, including their impacts in terms of well-being.
 - Addresses external validity.
 - What are the impacts of increasing the subsidy in an environment without activity test, when we only have information on impacts in an environment with activity test?
 - Depending on method used, partially addressed by RCM, SCM. Fully addressed by EMC.
 - Replaces meta-analysis with explanations based on economic principles.

- P4. Forecasting the impacts of interventions (constructing counterfactual states associated with interventions) never previously implemented to various environments, including their impacts in terms of well-being.
 - The problem policy analysts try to solve frequently.
 - What are the impacts of removing the activity test in terms of childcare usage, costs, and welfare?
 - Cannot be done without models, EMC.

Final remarks

- ► The main advantage of the EMC is that it can be linked to economic models.
- It is through those models that it is able to address all four classes of policy problems.
- ► In the example above, we could have simply estimated a multinomial choice model directly, without having to specify the utility function or budget constraint.
- However, that approach would not give us mechanisms of effects, nor external validity, nor welfare effects.

Final final remarks

- Each of the three frameworks of causality has advantages and disadvantages.
- Be familiar with all three.
- Use the right tool for the job.
- ▶ Sense-check your results, and don't take things too seriously.

Final final remarks

- Each of the three frameworks of causality has advantages and disadvantages.
- Be familiar with all three.
- ▶ Use the right tool for the job.
- Sense-check your results, and don't take things too seriously.
- ► Remember:

"An economist is someone who goes into a dark room to find a black cat that doesn't exist. An econometrician is someone who claims to have found it – with 95% confidence." Fin.